
Jimple: Simplifying Java Bytecode forAnalyses and Transformations�Raja Vall�ee-Rai Laurie J. HendrenSable Research GroupMcGill Universityfkor,hendreng@sable.mcgill.caAbstract
In this paper we present Jimple, a 3-address inter-
mediate representation that has been designed to
simplify analysis and transformation of Java byte-
code. We motivate the need for a new intermedi-
ate representation by illustrating several difficulties
with optimizing the stack-based Java bytecode di-
rectly. In general, these difficulties are due to the
fact that bytecode instructions affect an expression
stack, and thus have implicit uses and definitions of
stack locations. We propose Jimple as an alterna-
tive representation, in which each statement refers
explicitly to the variables it uses. We provide both
the definition of Jimple and a complete procedure
for translating from Java bytecode to Jimple. This
definition and translation have been implemented
using Java, and finally we show how this imple-
mentation forms the heart of the Sable research
projects.1 Introduction
The Java programming language is gaining a lot
of popularity, both as a language for programming
small applets on the web, and as a language for de-
veloping larger application systems. Although the
design of the source language and target bytecode
are quite clean, there remains significant challenges
in providing Java compilers and run-time environ-
ments that can exhibit run-time performance com-
parable to what is currently possible for applica-�This research was supported, in part, by NSERC and IBM’s
Centre for Advanced Studies (CAS). Java is a trademark of Sun
Microsystems Inc.

tions written in C/C++. Improving the performance
of Java needs to be attacked at many levels, in-
cluding: static bytecode optimization, Just-In-Time
(JIT) compiler technology and improved run-time
environments. In all cases, static program analy-
sis can provide important information. This paper
reports on the design and implementation of the
Jimple intermediate representation that has been
designed to simplify the task of developing static
analyses and transformations.

When considering the correct intermediate rep-
resentation for optimization, one might think that
analyzing Java bytecode directly would be a good
idea. Certainly the bytecode is not too low-level,
since all important program information like types
is directly available. Further, since bytecode is the
“binary” of the Java world, one would avoid spu-
rious translations to a separate intermediate code.
However, Java bytecode is a stack-based interme-
diate representation where instructions have an im-
plicit effect on an evaluation stack (for example, the
bytecode instructioniadd pops two integer val-
ues and pushes their sum). Many existing analy-
sis and transformation techniques rely on a more
traditional intermediate representation such as 3-
address instructions, where each instruction has ex-
plicit named operands (for example, an addition
would be represented as something likex=a+b).
Jimple provides such a 3-address representation.

The remainder of the paper is structured as fol-
lows. In Section 2 we explore the difficulties of
analyzing and transforming a stack-based represen-
tation in more depth, and we motivate the need
for a Jimple-like representation. Section 3 gives

1

the definition of Jimple, and Section 4 shows how
we translate Java bytecode to Jimple. In doing
this translation we concentrate on producing cor-
rect Jimple code for any verifiable bytecode (even
for bytecode that does not come directly from a
Java compiler), and we try to mimimize the num-
ber of extra statements and variable names that
are introduced. Both the Jimple API and the al-
gorithms to translate Java bytecode to Jimple has
been implemented in Java. In Section 5 we give a
brief overview of how we are using Jimple with our
Sable Java projects at McGill and, finally, in section
6 we give some conclusions and a brief description
of future work.2 Motivation
A central theme of this paper is that we prefer to
develop analyses and optimizing transformations
on Jimple, a 3-address intermediate representation,
rather than optimizing and transforming the stack-
based bytecode directly. In this section we discuss
the benefits of stack-based code in general (Section
2.1), and then examine some disadvantages of ana-
lyzing and optimizing the stack-based code directly
(Section 2.2).2.1 Bene�ts of stack-based representations
The stack machine model for the Java Virtual Ma-
chine was perhaps a reasonable choice for a few
reasons. Stack machine interpreters are relatively
easy to implement and this was originally impor-
tant because the goal was to implement the Java
Virtual Machine on as many different platforms
as possible. More relevantly, stack-based code
tends to be compact and this is essential to allow
class files to be rapidly downloaded over the Inter-
net. A third justification for this model is that it
simplifies the task of code generation. Since the
operand stack can be used to store intermediate re-
sults, simple traversals of the code’s abstract syn-
tax tree(AST) suffice to generate correct Java byte-
code.

There are two good reasons for manipulating
Java bytecode directly:

The stack code is immediately available:No
transformations are required to get the stack
code in this form, as it is the native form

found in Java classfiles. This is important if
execution speed is critical (such as for JIT
compilers).

The resultant stack code is final: Since the code
does not need to be transformed to be stored in
the classfiles, we have complete control over
what gets stored. This is important for ob-
fuscation since many of the obfuscation tech-
niques make heavy use of the stack to confuse
decompilers, and a 3-address code representa-
tion hides the stack.

In specific cases, such as those mentioned above,
a stack-based representation is useful. However, in
the general case where we optimize classfiles of-
fline, these advantages pale in comparison to the
following disadvantages.2.2 Problems of optimizing stack-basedcode
Even though there are advantages for choosing a
stack-based intermediate representation, there are
potential disadvantages with respect to program
analysis and optimization. To analyze and trans-
form Java bytecode directly, one is forced to add an
extra layer of complexity to deal with the complex-
ities of the stack-based model. Given that it is of
critical importance to optimize Java this drawback
is very important and must be eliminated to allow
the clearest and most efficient development of op-
timizations on Java.

Below, we enumerate some ways in which stack-
based Java bytecode is complicated to optimize.

Expressions are not explicit: In 3-address
code, expressions are explicit. Usually
they only occur in assignments (such as
x=a+b) and branch statements (such as an
if a<b goto L1). There is a fixed set of
possible expressions, simplifying analyses by
restricting the number of cases to consider.
For the purposes of this section, we shall
distinguish two classes of Java bytecode
instructions: theexpressioninstructions, and
action instructions. Expression instructions
are those which only produce an effect on
the operand stack. Examples of this class
are:iload, iadd, imul, pop. Action
instructions, on the other hand, produce a side
effect, such as modifying a field(putfield),

2

calling a method (invokestatic) or stor-
ing into a local variableistore. These
instructions have concrete effects, whereas
the expression instruction are merely used to
build arguments on the stack.

Thus in order to determine the expression be-
ing acted upon by an action instruction, you
need to parse the expression instructions and
reconstruct the expression tree, whereas in
Jimple these are readily available. And as the
next points illustrate, this reconstruction pro-
cess is not a trivial problem.

Expressions can be arbitrarily large: In order to
determine the expression being computed by
expression instructions, the analysis must ex-
amine the instructions preceding the action in-
struction and build an expression tree. For a
simple case such as:

iconst 5
iload 0
iadd
istore 1

it is easy to determine that the expression be-
ing stored in var1 is5 + var0. In some
cases, such as:

iload 3
iconst 5
iload 6
iload 3
iadd
imul
idiv
istore 0

the expression tree is more complex. In this
case it is(var3 + 5) * var6 / var0.
Variable expression length is a complication,
some analyses such as common subexpression
elimination require having simple 3-address
code expressions available to be implemented
efficiently. To use these expression trees in
such analyses, they would need to first be sim-
plified to use temporary locals, which the Jim-
ple form provides directly.

Concrete expressions can not always be con-
structed: Due to the nature of the operand
stack, the associated expression instructions
for a given action instruction are not necessar-
ily immediately next to it. The following store
still storesvar0 + 5 in var1, despite the in-
termingled bytecode instructions which store
var2 * var3 in var4.

iconst 5
iload 0
iadd
iload 2
iload 3
imull
istore 4
istore 1

If a complete sequence of expression instruc-
tions reside in a basic block, then it is always
possible to recover the computed expression.
Since the Java Virtual Machine does not re-
quire a zero stack depth across control flow
junctions, an expression used in a basic block
can be partially computed in a different basic
block. Consider the following example:

iload 0
iload 2
if_icmpeq label1
goto label2

label1:
ineg

label2:
istore 1

When computing the possible definitions for a
variable in a 3-address code intermediate rep-
resentation, the number of possible definitions
can not exceed the number of assignments to
that variable. This example illustrates that this
is not the case with stack code, for a single
assignment (istore 0) can yield two differ-
ent definitions (-var0 or var0). By allowing the
control flow to produce such conditional ex-
pressions obviously increases the complexity
of analyses such as reaching definitions and
optimizations such as copy and constant prop-
agation. Instead of considering just assign-
ments, they must consider the origins of ex-
pressions and their possible multiplicity. An-
other way of looking at this problem is that
some bytecode expressions, like ineg, are im-
plicitly defining a variable, but the name of
the variable is not explicit, it is simply some
stack location. By transforming to Jimple 3-
address code all definitions become explicit
definitions of named variables.

Simple transformations become complicated:
The main reason why stack code complicates
analyses and transformations is its piecemeal
form. The fact that the expression is split
into several pieces and is separated from the
action instruction causes almost all the com-
plications, for as a result, you can interleave

3

these instructions with other instructions, and
spread them over control flow boundaries.
Transforming the code in this form is difficult
because all the separate pieces need to be
kept track of and maintained. To illustrate
this point, this subsection considers the
problems associated with performing dead
code elimination.

In 3-address code, eliminating a statement is
often accomplished by simply deleting it from
a graph or list of statements. In Java byte-
code, removing an action instruction is simi-
lar, except that you also must remove all the
associated expression instructions, in order to
avoid accumulating unused arguments on the
stack. This sounds relatively simple, but there
is a catch: if the set of expression instructions
cross a control flow boundary, then this may
not be possible, because other paths depend
on the stack depth to be a certain height. For
example:

iload 0
iload 1

/ \
iadd imul
istore 5 istore 5
... use(5)

...

Despite the fact that on the left hand side
the local variable 5 is dead, theiadd and
istore 5 cannot be simply deleted, be-
cause we must ensure the two arguments on
the stack are still consumed. The best we can
do is replace the two instructions with two
pops. Note that a more sophisticated analy-
ses would hoist theimul, istore 5 se-
quence to one basic block higher to achieve
a better result, but this shows exactly how
simple transformations have become compli-
cated. In Jimple this problem does not occur,
because a dead assignment can be eliminated
without any fear of affecting other areas of the
program.

In general, transforming Jimple code is sim-
pler because the fundamental units (instances
of 3-address code) are self contained and do
not depend on other nearby units for their
meaning.

For developing analyses and transformations, it
should be clear that working with 3-address code,
like Jimple, is much simpler and more efficient than

dealing with stack code. Thus the need for a correct
and efficient way of transforming Java bytecode to
and from Jimple in to make it profitable to optimize
the code in Jimple.

The remainder of this paper gives a correct trans-
formation from Jimple to Java bytecode. Future
work will optimize the transformations, while re-
taining correctness.3 De�nition of Jimple
The Jimple intermediate representation comes in
two flavors: externaland internal. The external
representation is a regular ASCII text file which
represents a classfile in its Jimple form. This is
important in order to store Jimple code and pro-
vides compiler tools with a new language to target.
In general, however, manipulating text files to per-
form optimizations is cumbersome and so an inter-
nal representation to use in programs is needed. We
supply such an internal representation in the form
of a Jimple API (written in Java, of course) and this
API enables us to represent and manipulate Jimple
code in a straightforward and elegant manner.

Thus the Jimple intermediate representation can
be defined concretely in two different ways. We
present a grammar for the external version in
figures 1 and 2, and the latest specification of
the Jimple API can be found on the web at
http://www.sable.mcgill.ca/jimple.

Both forms have the following essential charac-
teristics:� The code is stackless.� Expressions are restricted to the least number

of operands (2 in most cases, such as for arith-
metic expressions, but possible more for some
method calls), and these operands must either
be constants or locals.� All local variables must be explicitly declared
and typed.� Some local variables can be assigned initial
special roles (such as the containers for the
passed parameters, or a caught exception.)

See figure 10 for a simple example of a complete
Jimple method.

Finally, we would like to note that Jimple’s de-
sign was inspired by SIMPLE [HS92], an AST to

4

represent C statements in a simple manner also to
facilitate optimizations. Furthermore, our current
design of Jimple is in its third generation, and notes
on the previous incarnations and their problems can
be found in [VR98].4 Translating Bytecode to Jimple
Generating correct Jimple code from bytecode has
two fundamental requirements. The generated code
must bestackless, and all local variables must be
explicitly typed.Since we are interested in optimiz-
ing this Jimple code, however, we also require that
code becompact.To illustrate these three require-
ments, consider the transformation of the following
bytecode.

iload 0 int x, y, z;
iload 1
iadd --> z = x + y;
istore 2

Original Java Good Jimple code
bytecode

In the produced Jimple code, the stack has disap-
peared, all local variables are typed and the state-
ment is as compact as possible. Thus this is a good
of example of the type of code we want to gen-
erate. To satisfy these requirements and generate
good Jimple code, we propose a five step transfor-
mation.4.1 Five Steps to Jimple

1. Producing Verbose Typeless Jimple: The
first step to produce Jimple code is to produce
verbose typeless Jimple. This is performed by
mapping the operand stack onto a set of un-
typed Jimple local variables, and transforming
the implicit references to the stack operands in
the stack code to explicit references to the lo-
cal variables in Jimple. An illustration:

.numlocals 2 unknown op0, op1;

.maxdepth 2 unknown a, b;

iload 0 op0 = a;
iload 0 op1 = a;
imul op0 = op0 * op1;
istore 1 b = op0;

Java bytecode Jimple code

Note that before translating a given byte-
code instruction to its Jimple counterpart, the

height of the operand stack must be deter-
mined before that bytecode.. This is neces-
sary in order to generate the correct refer-
ences to the Jimple local variables represent-
ing the stack. (This is illustrated in the pre-
vious example by noting that the same Java
bytecode instruction generates different Jim-
ple bytecode based on its position.) Determin-
ing the height of the operand stack is achieved
through a simple traversal of the code which
models the stack effect of each instruction.
This modeling process (as well as the trans-
lation process) is tedious to implement due to
the sheer number different Java bytecode in-
structions to handle.

The following table summarizes the effect on
the stack and the Jimple code generated for a
few Java bytecode instructions.

bytecode stack code
effect generated

iadd nt=t-1 op(nt)=op(t)+op(t-1)
iload x nt=t+1 op(t) = x
ladd nt=t-2 op(nt)=op(t)+op(t-2)
nop nt=t <nothing>
pop nt=t-1 <nothing>

t is the top index of the stack
nt is the new top index

There are two interesting points to note:� Generated typeless Jimple at this point is
self-contained. We could stop after step
one and have a valid intermediate repre-
sentation on which to operate. We are
interested, however, in typing the local
variables since this is essential for higher
level optimizations such as type based
alias analysis[DMM98].� Producing correct typeless Jimple is
possible because the Java Virtual Ma-
chine guarantees that the depth of the
operand stack is fixed for every program
point throughout the execution of the
program[LY96].

2. Compacting the Code: The previous stage
produces correct, but extremely verbose code.
A simple Java assignment statement such as
x = a * a is converted to four Jimple in-
structions, as illustrated by the example in step
1. The code can be compacted by simply per-
forming copy/constant propagation and dead
code elimination. More precisely, the algo-
rithm we use is:

5

jimple_method = local_declarations identity_stmts
stmts exception_ranges;

local_declarations = local_declaration local_declarations | ;
stmts = label ":" stmt ";" stmts |

stmt ";" smts | ;
exception_ranges = exception_range exception_ranges | ;
local_declaration = type name ";";
identity_stmts = identity_stmt identity_stmts | ;

stmt = breakpoint_stmt | assign_stmt | enter_monitor_stmt |
goto_stmt | if_stmt | invoke_stmt | lookup_switch_stmt | nop_stmt | ret_stmt |
return_stmt | return_void_stmt | table_switch_stmt | throw_stmt;

breakpoint_stmt = "breakpoint";
assign_stmt = variable "=" rvalue;
identity_stmt = local ":=" identity_value;
enter_monitor_stmt = "entermonitor" immediate;
exit_monitor_stmt = "exitmonitor" immediate;
goto_stmt = "goto" label;
if_stmt = "if" condition "then" label;
invoke_stmt = invoke_expr;
lookup_switch_stmt = "lookupswitch(" immediate ") {" cases " default: goto " label "}"
nop_stmt = "nop";
ret_stmt = "ret" local;
return_stmt = "return" immediate;
return_void_stmt = "return" ;
table_switch_stmt = "tableswitch(" immediate ") {" cases " default: goto " label "}"
throw_stmt = "throw" immediate;

cases = case cases | ;
case = "case " int_constant ": goto " label;

condition = eq_expr | ge_expr | le_expr | lt_expr | ne_expr | gt_expr;
rvalue = array_ref | constant | expr | instance_field_ref | local |

next_next_stmt_address | static_field_ref;
identity_value = caught_exception_ref | parameter_ref | this_ref;
variable = array_ref | instance_field_ref | static_field_ref | local;
immediate = constant | local;

expr = binop_expr | cast_expr | instance_of_expr | invoke_expr | new_array_expr |
new_expr | new_multi_array_expr | unop_expr;

binop_expr = add_expr | and_expr | cmp_expr | cmpg_expr | cmpl_expr | div_expr |
eq_expr | ge_expr | gt_expr | le_expr | lt_expr | mul_expr | ne_expr | or_expr |
rem_expr | shl_expr | shr_expr | sub_expr | ushr_expr | xor_expr;

add_expr = immediate "+" immediate;
and_expr = immediate "&" immediate;
cmp_expr = immediate "cmp" immediate;
cmpg_expr = immediate "cmpg" immediate;
cmpl_expr = immediate "cmpl" immediate;
div_expr = immediate "/" immediate;
eq_expr = immediate "==" immediate;
ge_expr = immediate ">=" immediate;
gt_expr = immediate ">" immediate;
le_expr = immediate "<=" immediate;
lt_expr = immediate "<" immediate;
mul_expr = immediate "*" immediate;

Figure 1: Grammar for external Jimple. (part 1 of 2)

6

ne_expr = immediate "!=" immediate;
or_expr = immediate "|" immediate;
rem_expr = immediate "%" immediate;
shl_expr = immediate "<<" immediate;
shr_expr = immediate ">>" immediate;
sub_expr = immediate "-" immediate;
ushr_expr = immediate "ushr" immediate;
xor_expr = immediate "xor" immediate;
cast_expr = "(" type ")" immediate;

instance_of_expr = immediate "instanceof" ref_type;
invoke_expr = interface_invoke_expr | special_invoke_expr | static_invoke_expr |

virtual_invoke_expr;
static_invoke_expr = "staticinvoke" "[" method_signature "](" immediate_list ")";
interface_invoke_expr = "interfaceinvoke" immediate ".[" + method_signature "]"

"(" immediate_list ")";
special_invoke_expr = "specialinvoke" immediate ".[" method_signature "]"

"(" immediate_list ")";
virtual_invoke_expr = "virtualinvoke" immediate ".[" method_signature "]"

"(" immediate_list ")";

immediate_list = immediate | immediate immediate_next_list | ;
immediate_next_list = "," immediate immediate_next_list | ;
new_array_expr = "new" type "[" immediate "]";
new_expr = "new" ref_type "()";
new_multi_array_expr = "new multiarray " type sized_dims empty_dims;

sized_dims = "[" immediate "]" next_sized_dims;
next_sized_dims = "[" immediate "]" next_sized_dims | ;
empty_dims = "[]" empty_dims | ;
unop_expr = length_expr | neg_expr;
length_expr = "length" immediate;
neg_expr = "-" immediate;
array_ref = immediate "[" immediate "]";
instance_field_ref = immediate ".[" field_signature "]";
static_field_ref = "[" field_signature "]";

method_signature = identifier "(" type_list "):" type;
field_signature = identifier ":" type;
type_list = type type_next_list | ;
type_next_list = "," type type_next_list | ;
caught_exception_ref = "@caughtexception";
parameter_ref = "@parameter" int_constant;
this_ref = "@this";

label = identifier;
local = identifier;
constant = double_constant | float_constant | int_constant | long_constant |

string_constant | null_constant;
type = int_type | long_type | float_type | double_type | ref_type |

stmt_address_type | void_type;
exception_range = ".catch" ref_type "from" label "to" label "using" label;

Figure 2: Grammar for external Jimple (part 2 of 2.)

7

until the code stops changingperform constant and copy propagationperform dead code elimination
Jimple is to be used as an intermediate rep-
resentation on which to perform optimiza-
tions. This step, however, made us develop
optimizations right away just in order to pro-
duce Jimple. In doing so, we partially tested
our framework’s usability, and the results are
encouraging. The analyses (reaching defini-
tions, using definitions, andavailable copies)
and transformations were extremely straight-
forward to implement. (Definitions for these
basic analyses can be found in [Muc97] and
[ASU86]).

Here are some examples of compacting some
code produced from step 1:

Before After

op0 = a
op1 = b x = a + b
op0 = a + b
x = op0

op0 = a call f(a, b)
op1 = b
call f(op0, op1)

Our cleanup algorithm is somewhat time con-
suming because data flow analysis is time con-
suming. One might argue that no such analy-
ses are needed because the Jimple code could
be collapsed into aggregated expressions as
it is produced, avoiding all these writes and
reads from temporary locals. This proposed
algorithm would fail, however, to deal with the
special case of expression computations span-
ning basic blocks. Spanning expressions de-
pend on values to be stored in specific stack
positions, and so explicit reads and writes to
the locals representing these stack positions
are required to produce equivalent Jimple.

Consider the following example:

iload 0 iload 2
iload 1 iload 3

\/
/\

iadd imul
istore 4 istore 4
... ...

In this case it is impossible to produce more
compact Jimple statements to represent this
code, since the arguments of iadd and imul are

variable. Our proposed algorithm, however,
correctly produces equivalent typeless Jimple
code:

op0 = a op0 = c
op1 = b op1 = d

\/
/\

op0=op0+op1 op0=op0*op1
e=op0 e=op0
... ...

Another issue worth considering is the place-
ment of this compaction step. Clearly it could
be performed at the end, when the typed Jim-
ple is produced, and possibly yield better re-
sults since no further transformations occur.
According to our experiments, however, we
determined that placing the compaction at the
second step yields the best execution speed
and that the increase in code size or number
of locals is negligeable in comparison (see fig-
ure 3.) If the size of the code is critical, then
the few extra statements produced in the jim-
plification process could be eliminated in an
optimizer based on Jimple anyway.

Note that a significant speed-up is achieved
for the latter two benchmarks (61% and 64%
faster, respectively). This occurs because the
algorithms used in subsequent steps execute
faster by dealing with a smaller set of state-
ments and local variables.

3. Splitting the Local Variables Having gener-
ated typeless compact Jimple code, all that re-
mains is to type it. Unfortunately, typing can
not be performed directly on the code at this
point. In the example1

op0 = "hello world";
string = op0;
op0 = 1;
unit = op0;

the variableop0 is used as both aString
and anint. Obviously one can not assign
a single type to this variable without causing
type conflicts. This type re-use occurs in Jim-
ple because it is allowed in the Java bytecode.
The Java Virtual Machine specification allows
local variables and stack positions to be used
as different types, as long as it is done con-
sistently so that no type conflicts occur. This

1Note that this code can not actually be generated by step 2
since it is not compact.

8

baf.Method jimple.StmtGraph DustV2.Playfield
locals stmts time ratio locals stmts time ratio locals stmts time ratio

compacting:step 2 103 216 1.00 52 261 1.00 234 1958 1.00
compacting:step 5 107 216 1.17 58 252 1.61 257 1940 1.64

Figure 3: The effect of compacting the code at different steps for three different benchmarks. The counts
reported above indicate the final number of locals and statements in the jimplified code. Thetime ratio
compares the execution of time to execution time for the jimplificationwhen the clean-up is in step two.

property is enforced by the type analysis stage
of the classfile verification[LY96].

We can transform the preceeding code into ty-
pable code by simply renaming the last two
references ofop0 to op1:

op0 = "hello world";
string = op0;
op1 = 1;
unit = op1;

This idea of renaming references can be gen-
eralized, so that local variables are prevented
from being re-used at all. Avoiding all re-uses
would cause a split ofx in the following ex-
ample, even if it is used as the same type.

x = 5; x1=5;
use(x); use(x1);
x = 10; x2=10;
use(x); use(x2);

before after

Although this might seem wasteful, splitting
local variables in this manner guarantees, by
definition, that they are not re-used. Hence,
they are not re-used as different types and are
now eligible to be typed.

Our intuitive notion of a local variable’s
multiple uses is captured by the notion of
webs[Muc97]. A web is a setS of refer-
ences (both definitions and uses in the regular
sense2) which is minimal and closed. Closed
in the sense that for every definitiond, the reg-
ular uses ofd are inS, and for all usesu, the
possible definitions are also inS. Minimal in
the sense that it should not have a strict subset
which is closed.

Given that we have the analyses ofreach-
ing definitionsand using definitions available,
building the set of webs for a program is
straightforward:

2Like on the right hand side of an assignment statement,
when the variable is read.

for every de�nition dif d is not in a webW = new webS = new setS.add(d)iterate over x in S while S is not emptyW .add(x)x is def: add all uses of x to Sx is use: add all defs of x to S
In plain words, the action of this algorithm is
as follows. Take a particular definition, and
put it in a web. Take all of the uses (in the
using definitionssense) of this definition, and
add them to the web. For every use added to
the web, add all the possible definitions to the
web. Iterate these last two sentences until a
fixed point is reached, at which point all of
these uses and definitions define a particular
useof the variable, as we are interested in find-
ing.

With these webs at our disposal, the splitting
algorithm is simply:construct the webs of uses and de�nitionssplit the locals so that every web has itsown associated local
Here is the result of applying this splitting al-
gorithm on an example with multiple uses and
definitions.

Before After

x = 1 x = 2 x1 = 1 x1 = 2
\/ \/
y=x y = x1
x = 3 x2 = 3
y = y + x y = y + x2
print(x) print(x2)

4. Typing the Local Variables Now that we
have Jimple code whichcanbe typed, we can

9

worry abouthow to type it. A straightfor-
ward approach to this problem is to build a
set of type restrictions for every local vari-
able, based on how the local variables are used
in the code. Since all local variables must
be defined before they are used (this is guar-
anteed by [LY96]) we decided to restrict the
set of references to consider to only the def-
initions. In the case of primitive types (e.g.
int, double), the type restrictions are in
fact type equalities. These equalities will al-
ways be consistent, because code such as

x = 1 x = 2.5
\/

print(x)

can not be generated from the previous step,
since the verifier would reject it before step 1
is reached.

Typing reference local variables is a more in-
teresting problem. An assignment to a refer-
ence local variable set the type restriction to
be thatthe left hand side is a superclass of the
right hand side.Given a set of these restric-
tions, a simple solution is theleast common
superclass.For example, ifB andC extendA,
the variable x in

x = new B x = new C
\/

print(x.toString())

could be directly typed asA, the least com-
mon superclass ofB andC. Note that collect-
ing type restrictions and assigning types must
be performed iteratively. This requirement is
illustrated in the following example.

x = new C;
y = null;

label1:
x = y;
y = new B;
goto label1;

The type ofx depends on the type ofy which
is unknown when the first assignment is vis-
ited. Only after having determined the type
of y to beB, canx = y be visited andx be
properly assigned a type. Here is a formal de-
scription of the algorithm we have just implic-
itly described.

assign the type unknown to all variablesuntil there are no more type changesfor every de�nition d of a local llet rt be the type of the right hand sidetype(l) = type(l).merge(rt)de�nition of merge(u, v):if u and v are primitives and equal: uif u and v are object references: leastcommon superclassotherwise: type error
Although this algorithm works on most class-
files we have encountered, it fails in two spe-
cific situations.� When dealing withnulls. The follow-

ing code only throws an null pointer ex-
ception, but it should still be converted
to correct Jimple.

a = null;

print(a[i]);

Our algorithm however typesa as a
java.lang.Object since it only
uses information about definitions. This
causes a type conflict for the array refer-
encea[i] sincea is not an array.� The second problem occurs when deal-
ing with interfaces.

class TypeFail
{

boolean condition;
A a; B b; C c; D d;

void f()
{

unknown x;

if(condition)
x = c;

else
x = d;

x.a();
}

}

interface A { void a(); }
interface B { void b(); }
interface C extends A, B {}
interface D extends A, B {}

Once again, just looking at the def-
initions is not sufficient, because the
classesC and D here have two differ-
ent common superclasses. Choosing the
wrong one produces a type conflict since
the methoda() cannot be called on an
instance of interfaceB.

10

These problems with our algorithm indicate
that we incorrectly simplified the solution
when we decided to only consider definitions.
Instead, we should take into account every ref-
erence to a local variable. In the above exam-
ples, usinga as an array would require thata
be an array, and callinga() on x would re-
quire thatx be an instance of a subclass of A.

This new algorithm is currently being devel-
oped by a member of our research group, and
is turning out to be more difficult than ex-
pected. A future paper will present the com-
plete typing solution when it is reached.3

5. Packing the Local Variables

At this point, we have compacted and typed
our stackless 3-address code, and it seems that
we might be done. Unfortunately, we are not,
for step 3 has uncompacted some aspects of
the code. In addition to having the least num-
ber of statements possible, we require that the
Jimple code produced we have the smallest
number of locals too. And step 3 has poten-
tially resulted in an explosion of locals (see
figure 11.) The following example illustrates
this problem.

x = y + z; x1 = y + z;
print(x); print(x1);
x = a + b; x2 = a + b;
print(x); print(x2);

before splitting after splitting

The final step for our transformation process
requires that we reorganize the local variables
so that they are re-used whenever possible.
This is the opposite problem of step 3. Pack-
ing local variables in this manner is similar to
the problem of register allocation. The only
difference is that we start off with a fixed set
of locals which can be arbitrarily large and we
are attempting to minimize their use, as op-
posed to attempting to map the local variables
onto a fixed set of registers.

The algorithm we use is a tweaked register al-
location algorithm based on Chaitin’s graph
coloring scheme as described in [ASU86]:construct an interference graph G for the locals

3In the mean time, you can contact Etienne Gagnon at
gagnon@sable.mcgill.ca for more details.

while there is a local to colorlet x be the local with the most interferencesremove x from the graph and assign it a colorsuch that its neighbouring locals have adi�erent color, using an already assignedcolor if possibleassign a local variable to each color, andrename all the references appropriately.
After having performed this algorithm, we fi-
nally have transformed our Java bytecode into
correct Jimple code which isstackless, typed
andcompact. Hence our initial requirements
for the transformation to this 3-address code
intermediate representation are sastified.

The next two sections illustrate the jimplification
process with a complete example, and give con-
crete results on its performance.4.2 An Example
Here is an example of the entire jimplification pro-
cess on a method calledstepPoly which com-
putes a simple piece-wise defined function. The
original Java code is in figure 4, and the bytecode
on which the jimplification process is performed is
in figure 5. Figures 6 through 10 are snapshots of
the code which is internally produced after every
step of the transformation.4.3 Preliminary Results
Figure 11 presents some results of the jimpli-
fication process on three different benchmarks.
baf.Method and jimple.StmtGraph
come from the Jimple framework, whereas
DustV2.Playfield comes from a numerical
application which simulates electric particle
motion.

The numbers presented are the local variable
and statements counts of the entire classfile, after
a given step of the transformation has been per-
formed. The time percentage indicates the amount
of execution time spent for this stage.

There are two interesting facts to note:� After step 2 is performed, the number of state-
ments consistently drops by roughly 40%.� Local packing is essential for good code gen-
eration. For the last benchmark, it reduces the
local variable count by 81%!

11

baf.Method jimple.StmtGraph DustV2.Playfield
locals stmts time(%) locals stmts time(%) locals stmts time(%)

step 1: verbose typeless 110 357 34 44 430 29 217 3261 24
step 2: compaction 87 216 34 34 261 31 178 1958 34
step 3: local splitting 134 216 10 181 261 11 1262 1958 11
step 4: type inference 134 216 <1 181 261 <1 1262 1958 <1
step 5: local packing 103 216 15 54 261 24 234 1958 27

Figure 11: Statistics on the local and statement count after each step in jimplification process.

public int stepPoly(int x)
{

if(x < 0)
{

System.out.println("error");
return -1;

}
else if(x <= 5)

return x * x;
else

return x * 5 + 16;
}

Figure 4:stepPoly in its original Java form.

public int stepPoly(int)
{

.maxstack 2

.maxlocals 2

iload 1;
iconst 0;
if_icmpge label0;

getstatic [java.lang.System.out:
java.io.PrintStream];

sconst "error";
virtualinvoke [java.io.PrintStream.
println(java.lang.String):void];

iconst -1;
ireturn;

label0:
iload 1;
iconst 5;
if_icmpgt label1;

iload 1;
iload 1;
imul;
ireturn;

label1:
iload 1;
iconst 5;
imul;
iconst 16;
iadd;
ireturn;

}

Figure 5:stepPoly in its bytecode form.

public int stepPoly(int)
{

unknown op0, l0, op1, l1;

l0 := @this;
l1 := @parameter0;
op0 = l1;
op1 = 0;
if op0 >= op1 goto label0;

op0 = java.lang.System.out;
op1 = "error";
op0.println(op1);
op0 = -1;
return op0;

label0:
op0 = l1;
op1 = 5;
if op0 > op1 goto label1;

op0 = l1;
op1 = l1;
op0 = op0 * op1;
return op0;

label1:
op0 = l1;
op1 = 5;
op0 = op0 * op1;
op1 = 16;
op0 = op0 + op1;
return op0;

}

Figure 6: stepPoly after step 1. Verbose and
typeless.

12

public int stepPoly(int)
{

unknown op0, l0, l1;

l0 := @this;
l1 := @parameter0;
if l1 >= 0 goto label0;

op0 = java.lang.System.out;
op0.println("error");
return -1;

label0:
if l1 > 5 goto label1;

op0 = l1 * l1;
return op0;

label1:
op0 = l1 * 5;
op0 = op0 + 16;
return op0;

}

Figure 7:stepPoly after step 2. It has been com-
pacted.

public int stepPoly(int)
{

unknown r1, r2, r0, r3, r4, r5;

r0 := @this;
r1 := @parameter0;
if r1 >= 0 goto label0;

r4 = java.lang.System.out;
r4.println("error");
return -1;

label0:
if r1 > 5 goto label1;

r2 = r1 * r1;
return r2;

label1:
r5 = r1 * 5;
r3 = r5 + 16;
return r3;

}

Figure 8:stepPoly after step 3. The locals have
been split to match the webs.

public int stepPoly(int)
{

java.io.PrintStream r1;
Example r0;
int i0, i1, i2, i3;

r0 := @this;
i0 := @parameter0;
if i0 >= 0 goto label0;

r1 = java.lang.System.out;
r1.println("error");
return -1;

label0:
if i0 > 5 goto label1;

i1 = i0 * i0;
return i1;

label1:
i3 = i0 * 5;
i2 = i3 + 16;
return i2;

}

Figure 9:stepPoly after step 4. It is now typed.

public int stepPoly(int)
{

java.io.PrintStream r1;
Example r0;
int i0;

r0 := @this;
i0 := @parameter0;
if i0 >= 0 goto label0;

r1 = java.lang.System.out;
r1.println("error");
return -1;

label0:
if i0 > 5 goto label1;

i0 = i0 * i0;
return i0;

label1:
i0 = i0 * 5;
i0 = i0 + 16;
return i0;

}

Figure 10:stepPoly after step 5. The locals have
been packed and this code is ready for optimiza-
tions.

13

Gimp Jimple

.baf
Baf

.class

.java

.gimp

dec
omp

ile
r

com
pil

er

obfuscator

.jimple

optimizer

javac

Figure 12: The Jimple intermediate representation
is at the heart of the Sable research projects at
McGill. The diamonds indicate internal API repre-
sentations, whereas the rectangles indicate external
ASCII text representations.5 Current Uses
The Jimple intermediate representation is currently
at the heart of the Sable research projects at McGill.
As shown in Figure 12, we also have two other rep-
resentations,GimpandBaf. Gimp is used when we
wish to form large aggregated expressions which
can be used in the conversion back to bytecode and
in the decompiler. Baf is a direct abstraction of Java
bytecode, and is used to shield us from the encod-
ing issues of dealing with Java classfiles directly.

Also note that Jimple is the central representa-
tion on which we perform analysis and transforma-
tion. We are currently working on a wide variety of
pointer analyses, side-effect analyses, and type ap-
proximation algorithms. The results of these analy-
ses will be used to optimize Jimple itself by apply-
ing traditional scalar optimizations like code mo-
tion, redundant and dead code elimination, and op-
timization of virtual method calls. We also feel that
it will be useful to encode the analyses results as at-
tributes in the resulting class files. In the case of JIT
compilers, pre-computed dataflow information can
be used to aid in register allocation, the elimination
of extra array bounds checks, and the optimization
of checks for exceptions[HAKN97]. In the case

of ahead-of-time compilers, the attributes can be
used instead of re-evaluating the dataflow informa-
tion (in fact the ahead-of-time compiler would not
even need to implement the analysis). Finally, these
attributes may also be used to provide hints to a
run-time system that can lead to dynamic optimiza-
tions.6 Conclusions and Future Work
In this paper we presented Jimple, a 3-address rep-
resentation for Java bytecode. We motivated the
need for such a representation, and showed how to
convert Java bytecode to Jimple.

It should be noted that many other Java transla-
tors probably also have to solve similar problems
because of the stack-oriented nature of Java byte-
code. This is particularly true when the target lan-
guage is traditional native code, or other represen-
tations that do not use an expression stack. Fur-
ther, other intermediate forms for Java have also
been proposed. One such proposal isSlim Bina-
ries which are based on abstract syntax trees that
can be compressed into a very dense representation
leading to smaller binaries than class files [KF97].
The authors argue that Slim Binaries are also well
suited to all levels of optimization. The Jimple rep-
resentation is not aimed at minimizing code size,
but is designed for ease of use (and familiarity) for
compiler writers who like to work with 3-address
type representations.

In designing Jimple we have concentrated on
making a clean API that is easy to use for both anal-
ysis and transformations. Jimple has undergone
several revisions based on the experience of build-
ing analysis and transformations, including those
analyses and transformations outlined in Section 4.
Further, in translating bytecode to Jimple, we have
included techniques that minimize extra names and
statements that are introduced by a naive transla-
tion from bytecode to 3-address code. By making
this code publicly available we hope to provide an
alternative to optimizing bytecode directly, and to
encourage others to build on the Jimple framework.

Our next goals are to provide automatic transla-
tion of Jimple (plus analysis information) back to
class files with attributes. We expect that some ad-
ditional work will be required to ensure that we
generate efficient stack code from Jimple. This
will involve good generation for aggregated expres-
sions, and effective packing of Jimple variables into
bytecode variables and stack locations.

14

Acknowledgements
We would like to thank Clark Verbrugge for

starting the Jimple project and providing us with
initial implementations of Jimple and Coffi which
helped us get off the ground. Also, the elegance of
the Jimple API’s is due in part to Etienne Gagnon.
He advised us on its design and helped us see the
light of object oriented programming.References
[ASU86] Alfred V. Aho, Ravi Sethi, and Jef-

frey D. Ullman. Compilers Princi-
ples, Techniques and Tools. Addison-
Wesley, 1986.

[DMM98] Amer Diwan, Kathryn S. McKinley,
and J. Eliot B. Moss. Type-based alias
analysis. InProceedings of the ACM
SIGPLAN ’98 Conference on Pro-
gramming Language Design and Im-
plementation (PLDI ’98), pages 106–
115, Montreal, Canada, June 1998.

[HAKN97] Joe Hummel, Ana Azevedo, David
Kolson, and Alex Nicolau. Annotating
and optimizing the java bytecodes. In
Proceedings of the Intenational Work-
shop of Security and Efficiency As-
pects of Java (MASCOTS ’97), pages
9–10, Eilat, Israel, January 1997.

[HS92] Laurie J. Hendren and Bhama Srid-
haran. The SIMPLE AST - McCAT
compiler. ACAPS Technical Note 36,
ACAPS Research Group, McGill Uni-
versity, October 1992.

[KF97] Thomas Kistler and Michael Frannz.
A tree-based alternative to java byte-
codes. InProceedings of the Intena-
tional Workshop of Security and Ef-
ficiency Aspects of Java (MASCOTS
’97), pages 9–10, Eilat, Israel, January
1997.

[LY96] Tim Lindholm and Frank Yellin.The
Java Virtual Machine Specification.
Addison-Wesley, 1996.

[Muc97] Steven S. Muchnick. Advanced
Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[VR98] Raja Vallée-Rai. The Jimple Frame-
work. Sable Technical Report 1, Sable
Research Group, McGill University,
February 1998.

15

